Störquellen

Auf die Verkabelung eines Netzes wirken die mannigfachsten elektromagnetischen Störquellen ein, z. B. elektrisch angetriebene Maschinen, Leuchtstofflampen, die Computer, Kopierer, und vieles andere. Aber auch die Kabel selbst verändern das Signal durch ihren ohmschen Widerstand und die Teifpaßcharakteristik. Alle Einflüsse ändern das eingespeiste digitale Signal - unter Umständen bis hin zu Fehlern auf Empfängerseite. Das Bild zeigt die wichtigsten Störeinflüsse und deren Auswirkungen.

Dämpfung

Wie schon erwähnt, wirkt die Leitung wie ein Tiefpaßfilter: sie läßt nur niedrige Frequenzen durch, hohe werden herausgefiltert. Diese Tiefpaßeigenschaft der Leitung zwingt dazu, nach einer gewissen Leitungslänge Verstärker (Repeater) einzubauen, um das Signal wieder zu regenerieren. Das Verhältnis von Aus- zu Eingangsspannung wird Dämpfung genannt und in Dezibel (dB) angegeben. Dabei gilt:

  
     1 dB = 20 * log(Eingangsspannung/Ausgangsspannung)

Ideal ist natürlich ein Verhältnis von 1:1 zwischen Ein- und Ausgangsspannung, also eine Dämpfung von 0 dB. Das bleibt aber ein Ideal, da jede Leitung einen gewissen Widerstand hat. Die naheliegendste Abhilfe liegt im Einsatz der Zwischenverstärker. Doch auch diesen sind prinzipielle Grenzen gesetzt.

Auch mit Verstärkerelementen, sogenannten Repeatern, sind nicht beliebig lange Leitungen realisierbar. Auf jede Leitung wirken Störungen ein. Diese elektrischen Signale weisen meist ein zufällig verteiltes Frequenzspektrum auf. Alle möglichen Nutzfrequenzen werden also mehr oder weniger stark gestört. Wichtig ist dabei,daß das Nutzsignal noch eindeutig erkennbar bleibt. Das Amplitudenverhältnis von Nutz- und Rauschsignal (in dB) nennt man Störabstand oder auch Signal-Rausch-Abstand. Repeater können aber in der Regel nicht zwischen Nutz- und Störsignal unterscheiden, sondern verstärken das gesamte Eingangssignal. Damit hat zwar das Ausgangssignal einen hohen Pegel, aber der Signal-Rausch-Abstand hat sich dabei nicht verbessert. Auf der nächsten Leitungsstrecke kommt zwangsläufig wieder Rauschen dazu, so daß mit wachsender Leitungslänge das Nutzsignal von immer mehr Rauschen überlagert wird.

Wenn der Rauschpegel genauso groß ist wie der Nutzpegel, kann kein Empfänger mehr Nutz- und Störsignal voneinander unterscheiden. Einige Tricks gibt es doch, der einfachste ist natürlich eine möglichst undurchlässige Abschirmung der Leitung, um das Eindringen des Rauschens zu verringem. Sonst wäre das weltumspannende Telefonnetz überhaupt nicht funktionsfähig.

Bei der Verlegung von Datenleitungen kommt es aber nicht allein auf eine gute Abschirmung an. Immer dann, wenn es um die elektrische Anpassung der Leitung an ein Gerät oder eine andere Leitung geht, kommt es auch auf die Beachtung des Eingangswiderstands oder der Impedanz der Leitung an. Anpassung ist immer dann gegeben, wenn der Ausgangswiderstand der einen Leitung genauso groß ist wie der Eingangswiderstand der anderen. Denn nur in diesem Fall kommt es nicht zu Reflexionen an den Ubergangsstellen. Sonst geht eine ankommende Welle nicht vollständig in das neue Medium über, sondern wird teilweise an der Nahtstelle reflektiert und damit zum Störsignal.

Begrenzung der Bandbreite

Man kann sich ein typisches Digitalsignal auch zusammengesetzt aus einer größeren Anzahl von Sinussignalen unterschiedlicher Freqenzen vorstellen. Je höher die Frequenz ist, desto geringer ist die Amplitude des jeweiligen Signals. Von diesen Frequenzen gelangen nur die Anteile zum Empfänger, die innerhalb der Bandbreite der Übertragungsstrecke liegen. Je geringer die Bandbreite des Mediums ist, desto mehr wird das Rechtecksignal "verschliffen". Am Empfangsort muß dann die Rechteckform wieder regeneriert werden. Nyquist hat eine Formel abgeleitet, mit der sich die maximale Datenübertragungsrate bei gegebener Bandbreite ermitteln läßt. Bei einem Digitalsignal (also zwei unterschiedliche Signalpegel) können bei einer Bandbreite von B (in Hertz) 2*B Bit pro Sekunde Übertragen werden. Allgemein lautet die Formel für die Übertragungsrate C (in Bit/s) bei einer Bandbreite B und einer Anzahl der Signalpegel M:

    C = 2*B*ld(M)

In der Praxis wird dieser Idealwert natürlich nicht erreicht, weil andere Störgrößen (z. B. Rauschen) dies verhindern. Eine Begrenzung der Bandbreite kann durch zu hohe Dämpfungswerte (siehe 1.6.1) oder falsche Kabeltypen hervorgerufen werden. Insbesondere sollte man bei der Twisted-Pair-Verkabelung die geringe Mehrausgabe nicht scheuen und gleich Typ-5-Kabel für 100 MBit/s verwenden, auch wenn man noch mit 10 MBit/s arbeitet. Bei einer späteren Aufrüstung ist das Neuverlegen wesentlich teuerer. Meist tritt jedoch die Bandbreitenbegrenzung bei WAN-Verbindungen über Modem in Erscheinung. Die derzeit erreichbaren Raten von 28800 bps oder 33600 bps sind bei normalen Telefonverbindungen schon am Rander des technisch möglichen.

Verzerrungen durch Laufzeit

Die Geschwindigkeit, mit der ein sinusförmiges Signal in einem Medium transportiert wird, variiert mit der Freqenz. Wenn also ein Rechtecksignal übertragen wird, das wir uns als Gemisch von Sinussignalen unterschiedlicher Frequenz vorstellen, dann kommen die einzelnen Frequenzanteile zu verschiedenen Zeiten beim Empfänger an (Laufzeitverzerrungen). Die Verzerrungen nehmen mit steigender Datenrate noch zu, weil das Signalgemisch nicht homogen wie bei einem stetien 0-1-Wechsel ist. Die Signalanteile, die durch die Flanken des Digitalsignals hervorgerufen werden, kommen häufiger vor und interferieren zusätzlich mit anderen Signalanteilen. Man spricht deshalb auch von 'Intersymbol-Interferenzen'. Diese können dazu führen, daß bei der Abtastung des Signals beim Empfänger in der nominellen Bitmitte Fehler auftreten können. Bei manchen Empfängerschaltungen versucht man diesen Fehler zu umgehen, indem der Abtastzeitpunkt adaptiv geändert wird. Die Laufzeitverzerrungen sind auch der Grund dafür, daß nicht beliebig viele Repeater hintereinandergeschaltet werden können.

Rauschen

In einem idealen Übertragungskanal sind in Übertragungspausen außer dem Ruhepegel keinerlei elektrische Signale festzustellen. In der Praxis stahlen jedoch mannigfache elektromagnetische Wellen auf das Kabel ein. Quellen solcher Störsignale sind alle elektrischen Geräte und Maschinen in der Umgebung der Leitung und nicht zuletzt auch die natürliche Strahlung von Erde und Atmosphäre. Die Freqenzen und Feldstärken sind von zufälligen Faktoren abhängig. Alle diese auf das Übertragungsmedium einwirkenden zufälligen Signale nennt man 'Rauschen'. Dieses Rauschen läßt sich durch keinerlei Maßnahmen vollständig beseitigen, sondern nur mildern, z. B. durch abgeschirmte Kabel.

Aber auch innerhalb der Übertragungsstrecke, etwa durch die Bewegung der Elektronen im Leiter wird ein, wenn auch sehr schwaches, zusätzliches Signal erzeugt. In den Übertragungsweg geschaltete Verstärker, z. B. Repeater, verstärken natürlich nicht nur das Nutzsignal, sondern auch den Rauschanteil. Wenn das Rauschen einen gewissen Pegel übersteigt, kann dies zu empfängerseitigen Fehlern führen.

Von besonderem Interesse ist das Verhältnis von Nutzsignal zum Störsignal, da dieses 'Signal-Rauschverhältnis' wie schon die vorher erwähnte Bandbreite die maximale Übertragungsrate beeinflußt. Speziell bei der modulierten Übertragung spielt dieser Faktor eine wichtige Rolle. Das Signal-Rauschverhältnis wird meist in Dezibel angegeben:

      SR = 10 * log(Signalpegel/Rauschpegel) dB

Ein hoher Wert für SR impliziert einen weiten Abstand zwischen Signalpegel und Rauschpegel ein niedriger Wert steht für 'schlechte' Leitungen. Ein schlechter Wert läßt sich immer auf zwei Wegen verbessern; entweder durch Anheben des Signalpegels oder durch reduzieren des Rauschpegels. Das theoretische Maximum der Datenübertragungsrate C abhängig von SR und der Bandbreite B wird durch das Gesetz von Shannon-Hartley definiert:

      C = B * ld(1 + SN) bps

Maßnahmen zur Senkung des Rauschpegels sind einerseits Abschirmung (beim Koaxkabel), im Einstreuung von Störsignalen zu verhindern, und andererseits Differenzsignale (bei Twisted Pair), bei denen sich die eingestreuten Störungen auf den beiden Leitungen kompensieren.